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Coupling of sound and internal waves in shear flows
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Gravity waves in the parallel shear flow of a continuously stratified compressible fluid are considered. It is
demonstrated that the shear induces a coupling between the sound waves and the internal gravity waves. The
conditions for the effectiveness of the coupling are defined. It is also shown that, under suitable conditions,
beat waves can be generated.@S1063-651X~96!12012-2#

PACS number~s!: 47.35.1i, 03.40.Kf, 43.20.1g, 92.60.Dj
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It is well known that in a medium with a gravity-induce
stratification thebuoyancy forcestend to excite internal
gravity wavesoriginating from a balance between the flu
inertia and the gravitational restoring force@1,2#. The inter-
nal gravity waves~hereafter referred to as IGW’s!, propagat-
ing in a differentially moving fluid—that is, in ashear flow
with continuous, gravity-induced stratification, display a ri
and complex structure.

In order to study this problem it is very convenient
employ the scheme where a moving coordinate system
used and the temporal problem is examined directly. T
method can, in principle, be used for any velocity profi
but it is mostly useful for ones that are piecewise line
@3–5#. Going to the moving frame mitigates the need for
Laplace transform@5–7# and greatly simplifies the solutio
of the initial value problem.

The problem of the evolution of IGW in anincompress-
ible parallel shear flow with linear velocity profile was re
cently considered by Chagelishvili@8#. In that study, non-
modal algebraically growing solutions, indicating th
possibility of anomalous amplification of IGW in she
flows, were readily found. This paper deals with the sa
problem for a compressible, unbounded, parallel flow wit
uniform ~linear! shear.

In @9#, where the evolution of two-dimensional~2D! per-
turbations in a compressible, plane Couette flow was con
ered the mechanism of the energy exchange between
mean flow and sound-type perturbations was discovered
linear mechanism of mutual transformation of waves, an
corresponding energy transfer induced by the existenc
the velocity shear was found in@10# for the 2D waves in an
unbounded, parallelhydromagneticflow ~see also@11#!. It
seems likely that analogous mechanisms will be operativ
other kinds of parallel shear flows, where conditions for
excitation of several~more than one! wave modes exist.

Since we are dealing with the shear flow in which sou
waves~SW! and IGW may be simultaneously excited, it
reasonable to expect that these modes may become e
tively coupled implying a linear mutual transformation wi
corresponding energy transfer between the modes.
551063-651X/97/55~1!/1185~4!/$10.00
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Let us consider the evolution of two-dimensional pertu
bations in a compressible, unbounded shear flow with
steady unidirectional mean velocity~parallel flow! that varies
linearly with height. Let us choose the coordinate axes s
that the regular velocity vectorU0[(Ay,0), is alongx, and
the acceleration due to gravityg5(0,2g0) is along negative
y. The basic system of linearized equations, describing
evolution of the small-scale, 2D perturbations in this flo
takes the form

Dtr81r0~]xux1]yuy!1~]yr0!uy50, ~1!

DtS81~]yS0!uy50, ~2!

Dtux1Auy52
1

r0
]xP8, ~3!

Dtuy52
1

r0
]yP81

r8

r0
2 ]yP0 , ~4!

r85S ]r0
]S0

D
P0

S81
P8

cs
2 , ~5!

wherecs[@(]P0 /]r0)#
1/2, andDt[] t1Ay]x . Making use

of the equilibrium condition]yP052r0g0, it is straightfor-
ward to eliminater8 from ~1! and ~4! to yield

DtP81r0cs
2~]xux1]yuy!2r0g0uy50, ~6!

Dtuy52
1

r0
]yP82

g0
r0

S ]r0
]S0

D
P0

S82
g0

r0cs
2P8. ~7!

To ‘‘set up’’ the analysis, we affect the transfo
mation, x15x2Ayt; y15y; t15t, (Dt→] t1;

]y→]y12At1]x1), which effectively takes us from the labo
ratory to the local rest frame of the basic flow@5,9–12#.
In new coordinates, where the initial inhomogeneity in spa
(y) has been exchanged for a new inhomog
neity in time, we may expand the perturbations
1185 © 1997 The American Physical Society
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1186 55BRIEF REPORTS
F5*dkx1dky1F̂(kx1,ky1,t1)exp@ i (kx1x11ky1y1)#, and con-
vert Eqs.~6!, ~2!, ~3!, and~7! to a set of first order, ordinary
differential equations forF̂(kx1,ky1,t1), which will be here-
after referred to as spatial Fourier harmonics~SFH! @9–12#.
It is convenient to write these equations in dime
sionless notation: R[A/cskx1, T[cskx1t1, b0[ky1 /

kx1, b(T)[b02RT, vx,y[ûx,y /cs , e[2kx1Ŝ8/(]yS0),

f[ P̂8/P0, a[P0 /r0cs
2 , and j[g0 /kx1cs

2 . We also note
that the dimensionless measure of the character
frequency of pure internal gravitational wave
v0
2[2(g0 /r0)(]r0 /]S0)P0(]yS0), can be readily defined a

W2[(v0 /cskx1)
2.

In this notation, the set of equations reduces to

a]Tf52 i @vx1b~T!vy#1jvy , ~8!

]Te5vy , ~9!

]Tvx52Rvy2 ia f , ~10!

]Tvy52 iab~T! f2W2e1~12a!j f . ~11!

When gravity is absent (W25j50) these equations@without
Eq. ~9!# reduce to the system describing plain sound wa
in free shear flows@9#. Note that the IGW can be retained
the system by assuming a nonzeroW2. Furthermore, the cou
pling between IGW and SW will be nonzero even if th
gravity-induced coupling (j) is small and negligible. Thus
without any fear of losing basic physics, we go ahead a
neglect j everywhere, and find the simplified system
equations@F5 ia f #,

]TF5vx1b~T!vy , ~12!

]Te5vy , ~13!
-

ic

s

d

]Tvx52Rvy2F, ~14!

]Tvy52b~T!F2W2e. ~15!

The spectral energy density of the SFH may be defined
E[(vx

21vy
2)/21F2/21W2e2/2, where the three terms cor

respond, respectively, to the fluid kinetic energy, the acou
potential energy, and the internal-wave potential energy.
spectral energy densityE(T) satisfies the differential equa
tion ]TE52Rvxvy . WhenR50 ~the fluid at rest!, E(T) is
conserved as expected.

In terms of a new variablec(T)[F2b(T)e@]Tc
5vx1Re], it is easy to transform Eqs.~12!–~15! into the
following pair of second order differential equations:

]TTc1c1b~T!e50, ~16!

]TTe1@W21b2~T!#e1b~T!c50, ~17!

representing two oscillators coupled throughb(T) @13#, with
v1[1 andv2(T)[AW21b2(T) as their respective eigen
frequencies. The presence of shear in the flow (RÞ0) en-
sures temporal variability of one of the uncoupled eigenf
quencies@v2(T)# and of thecoupling coefficientb(T). Note
that the time dependence of these quantities may be con
eredadiabaticwhenR!1 @9,10#.

Fundamental vibrational frequencies of the coupled os
lators Eqs.~16! and ~17! are equal to@13#

V6
2 5 1

2 @v1
21v2

26A~v1
22v2

2!214b2#. ~18!

Note that in the absence of gravity (g05W50)
V1(T)'A11b2(T) reduces to the plain sound mode@9#,
while V2(T)50, as it, certainly, should be.

Since the oscillation system, described by Eqs.~16! and
~17!, has two degrees of freedom its behavior may be de
mined by two functionsc(T) ande(T). Note that all other
physical quantities may be explicitly expressed in terms
c, e, and their first derivatives: F5c1b(T)e,
vx5]Tc2Re, andvy5]Te.
y
FIG. 1. The temporal evolution of the velocit
vx(T) and energyE(T)/E(0), respectively, for
an initially pure IGW@~a! and ~b!# and SW@~c!
and ~d!# modes. Dashed lines in~b! and ~d! rep-
resent the V2(T)/V2(0) ~IGW! and
V1(T)/V1(0) ~SW! curves, respectively, for
initially excited modes.b0510, R50.1, and
W50.5.
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FIG. 2. The temporal evolution of the velocit
vx(T) and energyE(T), respectively, for an ini-
tially pure IGW @~a! and ~b!# and SW @~c! and
~d!# modes. Dashed lines in~b! and~d! represent
the V2(T)/V2(0) ~IGW! and V1(T)/V1(0)
~SW! curves, respectively, for initially excited
modes.b0510,R50.1, andW51.
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The necessary conditions@14,10# for an effective energy
exchange between two weakly coupled oscillators are
existence of a so-called ‘‘degeneracy region,’’~DR! where
uv1

22v2
2u<ub(T)u, and that the DR should be ‘‘passed

slowly — the traversal time should be much greater than
period of the beatsu]Tv2(T)u!ub(T)u. The degeneracy re
gion is in the neighborhood ofT*[b0 /R, andW51 leads
to the most efficient mode coupling, and hence to the po
bility of mutual transformation of the modes. It is straigh
forward to see that for the current problem, the existence
DR is ensured ifub(T)u,1. As regards the condition fo
u]Tv2(T)u, in our case it reduces to the inequali
R!AW21b2(T), which is true for allT if R!W. Since
R!1, it is clear that forW51, the conditon is always satis
fied.

Regarding the ‘‘adiabatic behavior’’ of the modes, w
should expect that the modes should normally follow
e

e

i-

of

e

dispersion curves of their own: spectral energy density
either IGW@E2(T)# or SW @E1(T)# should be proportiona
to its corresponding frequency:E6;V6 @9#. This mode of
energy evolution, however, will not pertain in DR, whe
efficient transformation of one wave into the other occurs
W51. For instance, the energy of an initially excited IG
mode increases approximately by theE2(T);V2(T) law
up to the vicinity of the pointT* , where it is partially trans-
formed into SW. Afterwards, its energy evolution would st
proceed adiabatically, but now according to the la
E1(T);V1(T).

One more, quite impressive, evolution regime can be
alized when R!b0!1. In this particular case~with
W51), normal frequencies ofc and e ‘‘oscillators’’
@V1(T) andV2(T)# are almost equal to each other and t
coupling is inherently efficient. In this case beat modes w
result: if initially, only one, say, the ‘‘e oscillator’’ ~i.e.,
FIG. 3. Beat waves, displayed fore(T) and
vx(T) whenb051022, R51024, andW51.
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vx05vy05F050, ande0Þ0) is excited, beat waves with

frequencyVb[V1(T)2V2(T) will appear in time. Notice
that the frequency is variable, and gets smaller and sma
afterT exceedsT* .

In order to demonstrate the mutual transformation of IG
and SW with corresponding energy transfer between
modes, it is essential to choose initial conditions in suc
way that atT50, only one of the two modes is nonzer
Originally, we must calculate forT50 the auxiliary quanti-
ties @13#: s65(V6

2 2v1
2)/b0.

For exciting pure IGW (V2 mode!, we should choose
e05s2c0, and ]Te05s2]Tc0. Recalling that
c05F02b0e0, ]Tc05vx01Re0, and ]Te05vy0, we can

simply take F05e050 and an arbitrary vx0, and

vy05s2vx0. In exactly the same fashion we can excite pu
SW with F05e050, andvy05s1vx0.

The results of numerical calculations are partly presen
in Figs. 1–3. They are in almost complete agreement w
qualitative expectations.

In Figs. 1~a! @1~c!# and 11~b! @1~d!#, we display the tem-
poral evolution of the velocity vx(T) and energy
E(T)/E(0), respectively, for a pure IGW@SW# initial con-
dition, and with the initial datab0510, R50.1, and
W50.5. It is clearly seen that IGW@SW# evolves in the
usual manner@following adiabatically the correspondin
V(T)/V(0) curve, presented by the dashed line# until it
,

id
er

e
a

e

d
h

reaches DR (T*5100 here!, where a small portion of the
other wave appears.

Figure 2 is a repetition of Fig. 1 with the notable diffe
ence that the resonant value ofW51 is taken. The mutua
transformation of modes is now especially effective. T
graphs show that there occurs almost complete transfor
tion of IGW into SW andvice versa.

Finally, we display in Fig. 3 the results of numerical ca
culations fore(T) and vx(T) for b051022, R51024, and
W51 chosen to favor beat wave generation. The graphs
ambiguously show pronounced beat waves with a continu
back and forth energy transfer between the physical v
ables.

By studying a highly simple 2D model of a stratified fluid
we have explored the consequences of the shear-ind
coupling between the internal gravity and the sound wa
that leads to the mutual modal transformation, and to a c
responding energy transfer. Apart from the concrete nov
of the results obtained in this paper, themain messageof this
work is that the velocity shear may act like an effecti
‘‘mixer’’ of the different waves sustainable in shear flows
arbitrary origin and constitution.
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