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Coupling of sound and internal waves in shear flows
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Gravity waves in the parallel shear flow of a continuously stratified compressible fluid are considered. It is
demonstrated that the shear induces a coupling between the sound waves and the internal gravity waves. The
conditions for the effectiveness of the coupling are defined. It is also shown that, under suitable conditions,
beat waves can be generatE81063-651X96)12012-3

PACS numbg(s): 47.35:+i, 03.40.Kf, 43.20+9, 92.60.Dj

It is well known that in a medium with a gravity-induced  Let us consider the evolution of two-dimensional pertur-
stratification thebuoyancy forcesgend to exciteinternal  bations in a compressible, unbounded shear flow with a
gravity wavesoriginating from a balance between the fluid steady unidirectional mean velocitgarallel flow) that varies
inertia and the gravitational restoring forfg2]. The inter-  linearly with height. Let us choose the coordinate axes such
nal gravity waveghereafter referred to as IGW spropagat-  that the regular velocity vectdyo=(Ay,0), isalongx, and
ing in a differentially moving fluid—that is, in ahear flow the acceleration due to gravigy=(0,—go) is along negative
with continuous, gravity-induced stratification, display a richY- The basic system of linearized equations, describing the
and complex structure. evolution of the small-scale, 2D perturbations in this flow,

In order to study this problem it is very convenient to takes the form
employ the scheme where a moving coordinate system is
used and the temporal problem is examined directly. The
method can, in principle, be used for any velocity profiles
but it is mostly useful for ones that are piecewise linear
[3-5]. Going to the moving frame mitigates the need for a 1
Laplace transfornj5—7] and greatly simplifies the solution Diuy+Auy=——0d,P’, 3)
of the initial value problem. po

The problem of the evolution of IGW in aimcompress-

Dtp,+Po(axux+5yuy)+(aypo)uyzoa 1

DS’ +(dySp)uy=0, )

ible parallel shear flow with linear velocity profile was re- Duy=— iﬁyp/+ p_zaypo, (4)
cently considered by Chagelishv[l8]. In that study, non- Po 0

modal algebraically growing solutions, indicating the

possibility of anomalous amplification of IGW in shear ,_[9po S’+PI 5
flows, were readily found. This paper deals with the same p= E Eg ®)

problem for a compressible, unbounded, parallel flow with a Fo

uniform (linean shear. , , wherec=[(dPo/dpo)1*% andD,=d,+ Ayd,. Making use
In [9], where the evolution of two-dimension@D) per-  of the equilibrium conditiory,Po= — poQo, it is straightfor-

turbations in a compressible, plane Couette flow was considyaq to eliminatep’ from (1) and (4) to yield

ered the mechanism of the energy exchange between the

mean flow and sound-type perturbations was discovered. A D.P’ +PoC§(07xe+ dyUy) — poGouy =0, (6)
linear mechanism of mutual transformation of waves, and a

corresponding energy transfer induced by the existence of 1 do( 9po Jdo

the velocity shear was found [40] for the 2D waves in an Diuy=——dyP'— —(E) S —?P’- (7)
unbounded, paralléhydromagneticflow (see alsq11)). It Po Po Po Pots

seems likely that analogous mechanisms will be operative in To “set b th Vsi flect the t for-
other kinds of parallel shear flows, where conditions for the o “setup N .ana ysIS, .we ariect the rans.or
excitation of severalmore than onewave modes exist. mation, Xl:X_Ayt’ ylfy' L=t (Dt—”?ﬁ'
Since we are dealing with the shear flow in which sounddy— dy, —Atidx, ), which effectively takes us from the labo-
waves(SW) and IGW may be simultaneously excited, it is ratory to the local rest frame of the basic fld#,9-12.
reasonable to expect that these modes may become effdt new coordinates, where the initial inhomogeneity in space
tively coupled implying a linear mutual transformation with (y) has been exchanged for a new inhomoge-
corresponding energy transfer between the modes. neity in time, we may expand the perturbations as
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F=/dk,d kyllg(kxl,kyl,tl)exp[i (ky,X1tky,y1)], and con- drvy=—Rvy—F, (14)
vert Egs.(6), (2), (3), and(7) to a set of first order, ordinary
differential equations foF (ky ,ky ,t;), which will be here-
after referred to as spatial Fourier harmoni€&H) [9-12). The spectral energy density of the SFH may be defined as
It is convenient to write these equations in dimen-E=(v2+ vi)/2+ F2/24+W?2e%/2, where the three terms cor-
sionless notation: REA/cSle, TECskxltl, Bo= kyll respond, respectively, to the fluid kinetic energy, the acoustic
ke, B(T)=Bo—RT, vy, =0.,/cs, e=—k,S'/(3,S,), Potential energy, and the internal-wave potential energy. The
f): Br/p =OP [onc? g d X'i S/k 2 V\;(l | ysot spectral energy densiti(T) satisfies the differential equa-
=P'/Po, a=Po/poCs, and £=0o/ky,Cs. We also note o 5 Ry, ;) WhenR=0 (the fluid at rest E(T) is
that the dimensionless measure of the characteristiggnserved as expected.
frequency of pure internal gravitational waves, |5 terms of a new variabley(T)=F — B(T)e[ oy
2__ H 1 . A
wo="~(9o/po) (9po! ISo) p,(3ySo), can be readily defined as =, +R¢, it is easy to transform Eqg12)—(15) into the
sz(wolcskxl)z. following pair of second order differential equations:

In this notation, the set of equations reduces to
a drrurt gt B(T)e=0, (16

adrt=—i[vy+B(T)vy]+ vy, (8) drre+[W2+ B3(T)]e+ B(T) =0, (17

drvy=—B(T)F—We. (15)

representing two oscillators coupled throygfir) [13], with
w;=1 and w,(T)=W?+ BZ(T) as their respective eigen-
frequencies. The presence of shear in the fl&#Q) en-
drvy=—Rvy,—iaf, (100  sures temporal variability of one of the uncoupled eigenfre-
guencieg w,(T)] and of thecoupling coefficienB(T). Note
that the time dependence of these quantities may be consid-
eredadiabaticwhenR<1 [9,10].

Fundamental vibrational frequencies of the coupled oscil-
When gravity is absent{?= ¢=0) these equatiorfsvithout  lators Eqgs(16) and(17) are equal td13]
Eq. (9)] reduce to the system describing plain sound waves
in free shear flow§9]. Note that the IGW can be retained in 02 =L+ w5+ (02— w3)?+4B7]. (18
the system by assuming a nonz&. Furthermore, the cou-
pling between IGW and SW will be nonzero even if the Note that in the absence of gravitygd=W=0)
gravity-induced coupling &) is small and negligible. Thus, Q. (T)~1+82%(T) reduces to the plain sound mofe],
without any fear of losing basic physics, we go ahead andvhile Q_(T)=0, as it, certainly, should be.
neglect ¢ everywhere, and find the simplified system of Since the oscillation system, described by Ed$) and
equationy F=iaf], (17), has two degrees of freedom its behavior may be deter-
mined by two functions/(T) ande(T). Note that all other

&Te: v y (9)

drvy=—iaB(T)f —W?e+(1- a)£f. (11

orF =yt BTy, (12) physical quantities may be explicitly expressed in terms of
Y, e, and their first derivatives: F=¢+ B(T)e,
(9Te=vy, (13) UX:aTlJI_Re, andvyZ&Te.

(@): v, .[W=0.5,beta0=10,R=0.1] (©): v, ,[W=0.5,beta0=10,R=0.1]

FIG. 1. The temporal evolution of the velocity
. . ‘ . . . vy(T) and energyE(T)/E(0), respectively, for
) 50 100 150 200 ) 50 100 150 200 an initially pure IGW[(a) and (b)] and SW[(c)
and (d)] modes. Dashed lines ifb) and (d) rep-
resent the Q_(T)/Q_(0) (IGW) and

(b): E,[W=0.5,beta0=10,R=0.1]

15 1 (@ EIW=05beta0=10R=01] Q.(T)/Q.(0) (SW) curves, respectively, for
initially excited modes.B,=10, R=0.1, and
0.8r 1 W=0.5.
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FIG. 2. The temporal evolution of the velocity

-0.04 : . s 0.04 . L s vy(T) and energye(T), respectively, for an ini-
0 50 100 150 200 0 50 100 150 200 tially pure IGW [(a) and (b)] and SW[(c) and
(d)] modes. Dashed lines i) and(d) represent
100 —(®): B.IW=1beta0=10.R=0.1] (d): E,JW=1,beta0=10,R=0.1] the Q_(T)/Q_(0) (IGW) and Q. (T)/Q,(0)
' ' ' 1 ' ' ' (SW) curves, respectively, for initially excited
80L 1 08l S modes.B,=10,R=0.1, andW=1.
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The necessary conditiorid4,10 for an effective energy dispersion curves of their own: spectral energy density of
exchange between two weakly coupled oscillators are theither IGW[E_(T)] or SW[E, (T)] should be proportional
existence of a so-called “degeneracy regiofiDR) where  to its corresponding frequenc. ~ Q. [9]. This mode of
|w?—w3|<|B(T)|, and that the DR should be “passed” energy evolution, however, will not pertain in DR, where
slowly — the traversal time should be much greater than thefficient transformation of one wave into the other occurs for
period of the beat$drw,(T)|<|B(T)|. The degeneracy re- W=1. For instance, the energy of an initially excited IGW
gion is in the neighborhood of, =3,/R, andW=1 leads mode increases approximately by tke (T)~Q _(T) law
to the most efficient mode coupling, and hence to the possup to the vicinity of the poinf, , where it is partially trans-
bility of mutual transformation of the modes. It is straight- formed into SW. Afterwards, its energy evolution would still
forward to see that for the current problem, the existence oproceed adiabatically, but now according to the law
DR is ensured iff3(T)|<1. As regards the condition for E,(T)~Q.(T).
|rw,(T)|, in our case it reduces to the inequality = One more, quite impressive, evolution regime can be re-
R<JW?+ B%(T), which is true for allT if R<W. Since alized when R<B,<1. In this particular case(with
R<1, it is clear that foMWW=1, the conditon is always satis- W=1), normal frequencies ofyy and e “oscillators”
fied. [Q(T) andQ _(T)] are almost equal to each other and the

Regarding the “adiabatic behavior” of the modes, we coupling is inherently efficient. In this case beat modes will
should expect that the modes should normally follow theresult: if initially, only one, say, the & oscillator” (i.e.,

0.01 Entropy,[W=1,beta0=0.01,R=0.0001]
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FIG. 3. Beat waves, displayed feé(T) and
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v, ,[W=1,beta0=0.01,R=0.0001] v(T) whenB,=10"%, R=10"% andW=1.
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vxozvyozFozo, andey#0) is excited, beat waves with reaches DR T, =100 herg, where a small portion of the

frequencyQ,=Q , (T)—Q_(T) will appear in time. Notice Other wave appears.

; : Figure 2 is a repetition of Fig. 1 with the notable differ-
that the frequency is variable, and gets smaller and smaller S
after T exceedsT, . ence that the resonant value W=1 is taken. The mutual

transformation of modes is now especially effective. The

In order to demonstrate the mutual transformation of IGW raphs show that there occurs almost complete transforma-
and SW with corresponding energy transfer between th%on of IGW into SW andvice versa

modes, it is essential to choose initial conditions in such a Finally, we display in Fig. 3 the results of numerical cal-
way that atT=0, only one of the two modes is nonzero. culations fore(T) andv,(T) for 8,=10"2, R=10"4, and
Originally, we must calculate fof =0 the auxiliary quanti- W=1 chosen to favor beat wave generation. The graphs un-
ties [13]: 0. =(Q% — 03)/Bo. ambiguously show pronounced beat waves with a continuous
For exciting pure IGW _ mode, we should choose bzlck and forth energy transfer between the physical vari-
_ - i ables.
%0 _(IT:_ %0’ agd _&Te0+ g_ ﬁTl’/jr(_)la g Re_calllngw thit By studying a highly simple 2D model of a stratified fluid,
lﬂ.o— 0~ Bofo, Iro=0x TR, a T€= Uy, WE CAN e have explored the consequences of the shear-induced
simply take Fo=€,=0 and an arbitrary vy, and coupling between the internal gravity and the sound wave
vyo= 0 _Uxg. IN exactly the same fashion we can excite purethat leads to the mutual modal transformation, and to a cor-
SW with Fo=e,=0, andv o= 0, vxo. responding energy transfer. Apart from the concrete novelty
The results of numerical calculations are partly presente@f the results obtained in this paper, tiin messagef this
in Figs. 1-3. They are in almost complete agreement witf’OrX iS that the velocity shear may act like an effective
qualitative expectations, mixer” of the different waves sustainable in shear flows of
In Figs. 1@ [1(0)] and 11b) [1(d)], we display the tem- 2'PIU&TY origin and constitution.

poral evolution of the velocity v,(T) and energy The authors wish to thank George Chagelishvili and
E(T)/E(0), respectively, for a pure IGWSW] initial con-  Vazha Berezhiani for valuable discussions. A.D.R.’s re-
dition, and with the initial dataB,=10, R=0.1, and search was supported, in part, by International Science Foun-
W=0.5. It is clearly seen that IGWSW] evolves in the dation(ISF) long-term research grant RVO 300. ADR’s visit
usual manner[following adiabatically the corresponding to ICTP was supported, in part, by the Committee for Sci-
Q(T)/Q(0) curve, presented by the dashed Jinmtil it ence and Technology of Republic of Georgia.
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